Given x = 0101 and y = 1010 in twos complement notation (i.e., x = 5, y = -6), compute the product p = x * y with Booth's algorithm.
A | Q | Q(-1) | M | |
0000 | 1010 | 0 | 0101 | Initial |
0000 | 0101 | 0 | 0101 | Shift |
1011 1101 |
0101 1010 |
0 1 |
0101 0101 |
A <- A - M Shfit |
0010 0001 |
1010 0101 |
1 0 |
0101 0101 |
A <- A + M Shift |
1100 1110 |
0101 0010 |
0 1 |
0101 0101 |
A <- A - M Shiift |
Express the following numbers in IEEE 32-bit floating-point format:
- -5
1 10000001 01000000000000000000000 - -6
1 10000001 10000000000000000000000 - -1.5
1 01111111 10000000000000000000000 - 384
0 10000111 10000000000000000000000 - 1/16
1/16 = 0.0001 = 1.0 × 2–100
127 – 4 = 123 = 01111011
0 01111011 00000000000000000000000 - -1/32
–1/32 = –0.00001 = –1.0 × 2–101
127 – 5 = 122 = 01111010
0 01111010 00000000000000000000000
The following numbers use the IEEE 32-bit floating-point format. What is equivalent decimal value?
a. 1 10000011 11000000000000000000000
sign = -
exponent = 131 – 127 = 4
1.11 x 2^4 = 11100 = 28
-28
b. 0 01111110 10100000000000000000000
sign = +
exponent = 126 – 127 = -1
1.101 x 2^(-1) = .1101 = ½ + ¼ + 1/16 = .8125
.8125
c. 0 10000000 00000000000000000000000
sign = +
exponent = 128 – 127 = 1
1.0 x 2^1 = 10 = 2
2
Express the following numbers in IBM's 32-bit floating-point format, which uses a 7-bit exponent with an implied base of 16 and an exponent bias of 64 (40 hexadecimal). A normalized floating-point number requires that the leftmost hexadecimal digit be nonzero; the implied radix point is to the left of that digit.
a. 1.0 = +1/16 × 16^1 = 0 100 0001 0001 0000 0000 0000 0000 0000
b. 0.5 = +8/16 × 16^0 = 0 100 0000 1000 0000 0000 0000 0000 0000
c. 1/64 = +4/16 × 16^(–1) = 0 011 1111 0100 0000 0000 0000 0000 0000
d. 0.0 = +0 × 16^(–64) = 0 000 0000 0000 0000 0000 0000 0000 0000
e. –15.0 = –15/16 × 16^1 = 1 100 0001 1111 0000 0000 0000 0000 0000
f. 5.4 × 10^(–79) ≈ +1/16 × 16^(–64) = 0 000 0000 0000 0000 0000 0000 0000 0000
g. 7.2 × 10^75 ≈ 1 × 1663 = 0 111 1111 1111 1111 1111 1111 1111 1111
h. 65535 = 16^4 –1 = 0 100 0100 1111 1111 1111 1111 0000 0000
'Computer Science > Computer Architecture & Organization' 카테고리의 다른 글
컴퓨터 구조 용어 정리 (0) | 2020.06.22 |
---|---|
CA & CO Chapter 20 practice problem (0) | 2020.06.11 |
CA & CO Chapter 2 성능문제 (0) | 2020.05.02 |
CA & CO Chapter 5 practice problem (0) | 2020.04.26 |
CA & CO Chapter 4 practice problem (5) | 2020.04.21 |
댓글